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Motivation

One reason: We didn’t want to do the exercises.
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Definitions

Definition

A family of elliptic curves E is given by the equation

E : y2 + a1(T )xy + a3(T )y = x3 + a2(T )x2 + a4(T )x + a6(T )

with ai(T ) ∈ Z[T ].

We denote by Et the curve given by this equation when T is replaced by
t ∈ Q. We call Et the fibre at t and is an elliptic curve except for finitely
many exceptions.

Will assume a1 = a3 = 0 with deg ai ≤ 2 for i even.
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Definitions (cont’d)

Definition

The generic rank of E (denoted by rk(E(Q(T )))) is the rank of E as an
elliptic curve over Q(T ).

Theorem (Silverman)

We have rk(Et) ≥ rk(E(Q(T ))) for all but finitely many t ∈ Q.
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Motivations

Over an algebraically closed field k, one can find the generic rank
explicitly from the reduction type (Oguiso-Shioda).

Q1: What if k is not algebraically closed (e.g. k = Q)?

Q2: Is there an elliptic surface E over Q with generic rank 0 such that
every fibre Et has positive rank? (Cassels)

When K is a number field, it is known that

#{t ∈ P1 | rg(Et) 6= 0} =∞⇔ E(K) is dense

Q3: Suppose there is no elliptic curve E over Q such that
E ∼= E × P1.

Is E(Q) Zariski dense?
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Computing the generic rank

Conjecture (Nagao)

The rank of E over Q(T ) is

rE = lim
X→∞

1

X

∑
p≤X
−AE(p) log p,

where p runs through all primes p ≤ X and

AE(p) :=
1

p

p−1∑
t=0

aEt(p),

where aEt(p) = p + 1−#Et(Fp).
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Previous work

We follow methods previously used by Bettin, David, and Delaunay.

They
computed the rank on elliptic surfaces

? of the form

y2 = x3 + a2(T )x2 + a4(T )x + a6(T )

with deg ai ≤ 2 and ai ∈ Z[T ],

? with no multiplicative reduction except possibly at infinity.
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Problems we considered

Elliptic surfaces with multiplicative reduction at finite places

Generic rank

Mordell-Weil group

Fibres with rank higher than generic rank

Density of rational points
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More on Nagao’s conjecture

Nagao’s Conjecture

Assume E is not constant. Then the generic rank is

lim
X→∞

1

X

∑
p≤X

− log p

p

p−1∑
t=0

aE(t)(p),

where aE(t)(p) is the trace of Frobenius at p of the specialisation at t.

This is true in the case of rational elliptic surfaces, due to Rosen and
Silverman.
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An Example of What we Found

Proposition (BBDKPP)

Let k ∈ Q× and consider the family of elliptic surfaces

Ek : y2 = x3 + T 2x + kT 2.

From Nagao’s conjecture, we find

rank E(Q(T )) ≤ 1,

with equality if and only if k ∈ ± (Q×)
2
. Moreover, the generating section

is

(0,
√
kT ) if k is a square;

(−k,
√

(−k)3) if −k is a square.
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Generic rank over Q(T )

Shioda-Tate Formula

rank E(Q(T )) = rankNS(E)− 2−
∑
v

(mv − 1)

In our case

Let Ek : y2 = x3 + T 2x + kT 2. Then ∆(Ek) = −16T 4(4T 2 + 27k2),

j(Ek) = 1728
4T 2

4T 2 + 27k2
.

At T , we have type IV (mv = 3);
At the linear factors of (4T 2 + 27k2), we have type I1 (mv = 1);
At ∞, we have type I∗0 (mv = 5).

So rank Ek(Q(T )) = 10− 2− (3− 1)− 2(1− 1)− (5− 1) = 2.
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Classification when a2 = 0

Theorem (BBDKPP)

Consider the non-isotrivial elliptic surface

E : y2 = x3 + a4(T )x + a6(T ),

with deg ai ≤ 2 such that there are exactly two fibres of multiplicative
reduction over Q.

Then E belongs to one of the following families:
y2 = x3 + kx + T with k ∈ Q×;
y2 = x3 + (aT + b)x + (aT 2 + bT ) where a 6= 0 and b 6= a2/27;
y2 = x3 + P (T )x + kP (T ) for some quadratic polynomial P and
k ∈ Q× such that 4P (T ) + 27k2 is nonsquare in Q[T ].
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Isotrivial elliptic surface

Example

The isotrivial elliptic surface

E : y2 = x3 + T

has rank(E(Q(T ))) = 0.

However, it has infinite subfamilies of positive rank. In particular, the
subfamily of elliptic curves (given by Nagao)

Es : y2 = x3 + (s2 −m3)

has generic rank 1 for any fixed m ∈ Z \ 0.

Julie’s group Generic Rank Trieste 2017 13 / 18



Isotrivial elliptic surface

Example

The isotrivial elliptic surface

E : y2 = x3 + T

has rank(E(Q(T ))) = 0.

However, it has infinite subfamilies of positive rank. In particular, the
subfamily of elliptic curves (given by Nagao)

Es : y2 = x3 + (s2 −m3)

has generic rank 1 for any fixed m ∈ Z \ 0.

Julie’s group Generic Rank Trieste 2017 13 / 18



Root numbers and examples

Conjecture (BBDKPP)

The elliptic surface E : y2 = x3 + 15(27T 6 + 1) has positive generic rank.

Family of constant root number (W (Et) = −1) for all t ∈ Q) found
by Julie.

Our method doesn’t work since deg ai too large. :-(
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Open questions and possible future work

Use known families with constant root number to guess interesting
subfamilies of elliptic curves with high rank?

Generic rank when deg ai is high
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Thank you!

Julie’s group Generic Rank Trieste 2017 16 / 18



References

S. Arms, A. Lozano-Robledo, and S. J. Miller. Constructing
one-parameter families of elliptic curves with moderate rank. J.
Number Theory, 123(2): 388 – 402, 2007.

S. Bettin, C. David, and C. Delaunay. Families of elliptic curves with
non-zero average root number. arXiv:1612.03095, 12 2016.

B. Conrad, K. Conrad, and H. Helfgott. Root numbers and ranks in
positive characteristic. Advances in Mathematics 198(2): 684 – 731,
2005.

J. Desjardins. Density of rational points on rational elliptic surfaces.
arXiv:1610.07440, 2016.

Julie’s group Generic Rank Trieste 2017 17 / 18



References (cont’d)

K. Nagao. Q(T )-rank of elliptic curves and certain limit coming from
the local points, Manuscripta Math. 92: 13 – 32, 1997.

K. Oguiso and T. Shioda. The Mordell-Weil lattice of a rational
elliptic surface. Rikkyo Daigaku sugaku zasshi 40(1): 83 – 99, 1991.

M. Rosen and J. Silverman. On the rank of an elliptic surface. Invent.
Math. 133(1): 43 – 67, 1998.

J. Silverman. The Arithmetic of Elliptic Curves, GTM 106.
Springer-Verlag, New York, 1994.

Julie’s group Generic Rank Trieste 2017 18 / 18


	Previous work and methods used
	References

